3 research outputs found

    An Alternative Nonlinear Lyapunov Redesign Velocity Controller for an Electrohydraulic Drive

    Get PDF
    This research aims at developing control law strategies that improve the performances and the robustness of electrohydraulic servosystems (EHSS) operation while considering easy implementation. To address the strongly nonlinear nature of the EHSS, a number of control algorithms based on backstepping approach is intensively used in the literature. The main contribution of this paper is to consider an alternative approach to synthetize a Lyapunov redesign nonlinear EHSS velocity controller. The proposed control law design is based on an appropriate choice of the control lyapunov function (clf), the extension of the Sontag formula and the construction of a nonlinear observer. The clf includes all the three system variable states in a positive define function. The Sontag formula is used in the time derivative of our clf in order to ensure an asymptotic stabilizing controller for regulating and tracking objectives. A nonlinear observer is developed in order to bring to the proposed controller the estimated values of the first and the second time output derivatives. The design, the tuning implementation and the performances of the proposed controller are compared to those of its equivalent backstepping controller. It is shown that the proposed controller is easier to design with simple implementation tuning while the backstepping controller has several complex design steps and implementation tuning issue. Moreover, the best performances especially under disturbance in the viscous damping are achieved with the proposed controller

    A Novel Adaptive and Nonlinear Electrohydraulic Active Suspension Control System with Zero Dynamic Tire Liftoff

    No full text
    In this paper, a novel adaptive control system (NAC) is proposed for a restricted quarter-car electrohydraulic active suspension system. The main contribution of this NAC is its explicit tackling of the trade-off between passenger comfort/road holding and passenger comfort/suspension travel. Reducing suspension travel oscillations is another control target that was considered. Many researchers have developed control laws for constrained active suspension systems. However, most of the studies in the works of the latter have not directly examined the compromise between road holding, suspension travel, and passenger comfort. In this study, we proposed a novel adaptive control system to explicitly address the trade-off between passenger comfort and road holding, as well as the compromise between passenger comfort and suspension travel limits. The novelty of our control technique lies in its introduction of a modeling system for a dynamic landing tire system aimed at avoiding a dynamic tire liftoff. The proposed control consists of an adaptive neural networks’ backstepping control, coupled with a nonlinear control filter system aimed at tracking the output position of the nonlinear filter. The tracking control position is the difference between the sprung mass position and the output nonlinear filter signal. The results indicate that the novel adaptive control (NAC) can achieve the handling of car–road stability, ride comfort, and safe suspension travel compared to that of the other studies, demonstrating the controller’s effectiveness
    corecore